Home > Theory > Lines Modelling > Bar Element
Bar element
The bar element only bears axial strains with a multi-linear axial stiffness. A point P of the structure in the global reference is located by its position on the mean line :
\[
\overrightarrow {OP} = \vec {x_o}(s)
\]
Then comes the axial strain, \(\varepsilon = \left \lVert\frac {\partial \vec {x_o}}{\partial s} \right \rVert -1\), and the axial force, \(\vec N_x = EA \varepsilon \vec n\) , with \(\vec n = \frac {\vec {x_0}}{\lVert \vec{x_o} \rVert}\).
Finally, the internal efforts contribution of a bar element is given by :
\[
G_{internal}^{bar}(\vec x, \delta\vec{x}) = <\vec{N_x}.\delta\vec{x_o}>
\]
Let \(A_{\rho}\) be the lineic mass diagonal matrix. Then the inertia contribution writes :
\[
G_{internal}^{bar} = < A_{\rho} \ddot{\vec {x_o}}.\delta\vec{x_o}>
\]